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We give the result of a bootstrap of the p and Pomeranchuk trajectories in pion-pion scattering, using the
unitarized strip approximation. In this scheme, we construct an analytic, crossing-symmetric, unitary ampli-
tude with Regge asymptotic behavior. This is achieved by starting with strips in which the double spectral
function is parametrized by Regge poles, in the way devised by Chew and Jones, and adding the elastic
double spectral functions in each channel calculated by the Mandelstam iteration method. Unitarity is
imposed using the N/D method with inelasticity. We find self-consistent trajectories which bear a fair
resemblance to those found experimentally, at least for small |¢|, and obtain a p of width 155 MeV, which
is very much better than earlier calculations. This and related improvements are due to the proper inclusion
of Pomeranchon exchange. The requirement of self-consistency does not fix the trajectories uniquely, but
the range of solutions is comparatively narrow, with 0.32<a,(0) <0.69. There are still some unsatisfactory
features in comparison with the phenomenological trajectories: We always find that a,(»)>—1, thereis a
too rapid increase of Ime just above threshold, and the trajectories do not rise much above Rea=1. We
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draw some conclusions about the prospects for this sort of S-matrix dynamics.

I. INTRODUCTION

N a previous paper! we have described a method of
carrying out bootstrap calculations using ‘‘the
unitarized strip approximation.”? In this model we
parametrize the asymptotic strip of the double spectral
functions by Regge poles, in the way devised by Chew
and Jones,® and then use the Mandelstam* iteration
method to calculate the nearby parts of the elastic
double spectral functions in each channel. These are the
corners of the double spectral functions shown in Fig. 1
of Ref. 1. The sum of the strip and corner contributions
to both the left- and right-hand cuts of the s-channel
partial-wave amplitudes are calculated, and unitarity
is imposed by the Frye-Warnock?® inelastic N/D equa-
tions. A parameter search is then undertaken to try
and make the input Regge functions coincide with the
output Regge functions generated by the N/D equa-
tions. If they can be made consistent a bootstrap of the
trajectories has been achieved.

The advantages of this model over earlier calcula-
tions,$ 7 using the “new strip approximation” of Chew
and Jones,® are that by including the corners of the
double spectral functions we automatically include

* Supported by 'the National Research Council of Canada.
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higher Born approximations to the amplitude in the
left-hand cut of the partial-wave amplitudes. (The first
Born approximation, i.e., “the potential,” consists of
the ¢- and #-channel strips.) It has been shown?® that it is
essential to include such higher Born approximations in
nonrelativistic potential-scattering calculations, and we
might expect that this will also be the case in .S-matrix
theory. Their inclusion is particularly important when
there are repulsive potentials, and we know that the
Pomeranchuk (P) trajectory gives rise to a repulsive
potential.® At the same time a knowledge of the elastic
double spectral functions enables us (by crossing sym-
metry) to calculate the inelasticity in the s-channel
strip region, and this inelasticity can be included in the
Frye-Warnock N/D equations.

In Ref. 1 we used this method to bootstrap the p
trajectory in the m-m scattering amplitude, and were
able to obtain self-consistent trajectories. Since, how-
ever, the p-exchange force also generated a P trajectory
which was not included in the input, the bootstrap was
incomplete.

In this paper we describe a bootstrap of the p and P
together. This was not really possible in the new strip
approximation because the P repulsion prevented solu-
tion of the N/D equations unless a rather doubtful
“normalization” procedure was used.”!® On iterating
the potential, this difficulty is overcome, and good self-
consistent trajectories are obtained.

Also in Ref. 1 the parametrization of the Regge func-
tions was unsatisfactory since in order to generate suit-
able trajectories a(f), a large peak in Ima(f) was needed

(1;6%) D. B. Collins and R. C. Johnson, Phys. Rev. 169, 1222
9 G. F. Chew, Phys. Rev. 140, B1427 (1965).
10 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).
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just above the p mass. This produced a spurious bump in
the f-channel total cross section which was not repro-
duced in the output s-channel cross section. Thus full
crossing symmetry was not achieved.

It is a disadvantage of our method that we are unable
to follow the trajectories above the w-w threshold s, so
that self-consistency can only really be imposed on a(s)
for s <s¢. We have made use of the results of Bali,’ who
calculated Ima(t) by a different method (though notin a
fully crossing-symmetric calculation), to improve the
parametrization of the trajectory functions, and are
thereby able to impose approximate equality on the s-
and ¢-channel cross sections. This greatly narrows the
range of acceptable bootstrap solutions.

In Sec. I1, we review, for completeness, the equations
of the unitarized strip approximation derived in Ref. 1,
and discuss the parametrization of the Regge functions.
In Sec. IIT the numerical results of the bootstrap are
presented, and some conclusions concerning this sort of
dynamics are drawn in Sec. IV.

II. UNITARIZED STRIP APPROXIMATION

For brevity we shall assume that the reader is familiar
with the discussion presented in Ref. 1, and here we only
quote the more important equations, without derivation.

In the new strip approximation of Chew and Jones
the strips of the double spectral function for a given
trajectory are given by

pai(s,) = ALET T () Pacy(—1—5/2¢2) J0(s—s1)

where

(2.1)

r()=[2O+1IO(—g/)=®, (2.2)

where a(f) is the trajectory, y(f)(f)=*®W=vy(!) is the
reduced residue, s; is the boundary of the strip, and ¢ is

the usual scale factor.
Each of these strips contributes to the total amplitude

™ N
Ra(s,t)=3T()| —- Paz<l+——~)
0 =310| P14

81 alt 1—5"/q
_/ Peto(=1=5/4) )(ls:|, 2.3)

’
4q¢’

S =S

and the Reggeized Born approximation to an amplitude
of isotopic spin 7 in the s channel is

A*(s,0) =2 [R:"(s,)+(— 1) R (s,0) Jorr,
+Z ﬁ(I:Ii)[stl(tys> + ( - l)IjRJ'ul(tyu):I

+(_ 1)1 Z ﬁ(ljlk)[Rk“(uas)
%
+(_ 1)IkRk“(uat)] )
where 8(1,1;) is the m-m isotopic spin crossing matrix

1 N. F. Bali, Phys. Rev. 150, 1358 (1966).

(2.4)
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and the sums are over all the trajectories in each of the
three channels.

The elastic double spectral function in the s channel is
calculated using the Mandelstam iteration formula.
From the elastic unitarity condition we have

Pst els(s t) S — //(ilﬂil»
TN

Dtj:<3+,l1)Dti(S_,lz>

(2.5)
KY2(t t,t,5)
where
K(l,tl, 152,.5‘) = [t2+t12—|"t22—2(tt1+tt2+t1t2)
—thty/q,*], (2.6)

and s and s_ are points above and below (respectively)
the s cut of D.. The g(s) is the function which, as ex-
plained in Ref. 1, cuts off the double spectral function
above sy, viz.,

g2(s)=1/(14-¢l—s0/2), (2.7)
Also,
1 Ps ﬁls(s”y )
D*(s,1) =_/ zf"""*ds”—{—l),”i(s H, (2.8)
T s —s

where D.* is the ¢ discontinuity across the ¢ and
strips, i.e.,

Dt”(j‘,t)zA;[stl(S,t)]. (2.9)

Having calculated by iteration p,°*(s,f) for all{<sy,

we can use crossing symmetry to find the other “corner”

double spectral functions, viz.,
Pste”(sJ) =p3¢els<t:5) )
pluelt(t)u) = pslels(t’u) )
Pluelu(t,u) — Pstels(u,t) .

(2.10)

The contribution of these pieces of the double spectral
function to the amplitude is

Ps elt S” t/ 4 1A(-:Iu S‘H /
A:t(st)—~// 2 ))'(’ )( “) irar
—s)(! —t

(2.11)

pm"“(t’ ') pu, (' 1)
+— / du"dt
—u’)(t’—l)

and this is to be added to (2.4).

A partial-wave projection is then made of the sum of
(2.4) and (2.11) to find the partial-wave amplitude
By(s). The part B;*(s), the sum of the left-hand cut and
the right-hand cut above sy, is then isolated, i.e.,

1 roz ImB(s") 1 = ImBy(s')
Blv(s)E_f (] 5'—}-—/ —,———-ds'.

T/)ow 8= m™Jsy §—S

(2.12)
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The elastic s-channel double spectral functions
[ps®'é(s,t), etc.] are also used to calculate the inelasticity
within the strip region in terms of the inelasticity
parameter 7,(s) [see Eq. (4.18) of Ref. 17.
All of this is used as input to the N/D equations
written in the Frye-Warnock form:

1 S1 Bl (S') BZ<S)

/

Ni@s)= Bl”(s)—{—

50 s'—s
XMLA (2.13)
"H(S
and
t pi(s)N(s")
—_ —— s’ 2.14
D=1 r/;o ) =) 19
where
_ P poil—nq(s) ds
v(¢) = R,? — — 1
B =B+ / e 019
Ni(s) ‘——ﬁ)—‘ Re{Ni(s)}, (2.16)
14m(s)
and
s—4m2\ 2 /s —4dm\}
po=(—) (). e
s 4

The output Regge parameters are then obtained from

Da(x)(s)zo (218)
and
v(s) =Na(s) (2.19)
a'(s) D (5)l1=at

where the primes denote d/ds. However, it is only
possible to obtain a(s) and v(s) below threshold in this
way, since above threshold the pole moves onto the un-
physical s sheet, and we should need to solve the equa-
tions for complex / and s. As discussed in Ref. 1, this is
the principal disadvantage of our method compared
with the purely iterative calculation of, for example,
Bali et al.11:12

The Regge functions are expected to satisfy dispersion
relations of the form

» Ima(s ')
a(s)= a(w)+ (2.20)
50 S —$
and )
'y(s)=1f Injv(szs’, (2.21)
MJSsg S —S§

provided that two trajectories do not cross (which
might introduce left-hand cuts?). The assumptions
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implicit in (2.20) and (2.21) about the number of sub-

tractions needed in these dispersion relations can be

shown to follow from the form of the model.?:13 In

particular, we cannot have trajectories with (see
Sec. IV)

a(s) > £ o,

S§—> o0,

(2.22)

In Ref. 1 we used a Breit-Wigner shape for Ima, and
adjusted the parameters until the form of the function
below threshold agreed with the output from the N/D
equations. The result was that D,?(s,t) from (2.9) ob-
tained a spurious peak at the value of ¢ corresponding to
the maximum of Ima(f) (which had to be just above the
p mass in order to give adequate curvature to the tra-
jectory). Such a peak was not, of course, found in the
output cross section, and so proper crossing symmetry
was not achieved.

An examination of Bali’s calculdtlons reveals what
seems to be a more likely parametrization. It is evident
from his Figs. 8 and 10 that Ime in fact rises almost
linearly throughout the strip, and is only really damped
down by the cutting-off of elastic untarity by g(s) in
(2.5).

At first sight, this might seem to imply an incon-
sistency in the strip approximation, since if D,*(s,)
were to have its peak close to the boundary of the strip
(i.e., t=zsy) the first iteration of D,*(s,f) in (2.5) would
produce a peak at #~~d4s;, with further peaks for suc-
cessive iterations, and a smooth Regge behavior would
not be seen until £>s,. The strip approximation requires
Regge behavior for #>s;, and experimentally Regge
behavior is known to set in at quite low energies. In
fact, however, even in Bali’s potential-scattering cal-
culations [where Ima is eventually cut off by the Ins/s
convergence of B;’(s)], Ima(f) continues to rise up to
energies large compared with the masses which deter-
mine the scale of the forces despite the fact that Regge
behavior sets in at much lower energies than this.

The solution to this problem is that v (f) is very small
in the upper part of the strip. In Bali’s calculations
Imy(?) is negative just above threshold, which pulls
Rey(t) down sharply in this region (see Fig. 6 of Ref.
11). It is evident from (2.9) that if |y(#)| is small for
1>m,? then so is | D,*|, and we can expect the double
spectral function calculated by the iteration (2.5) to
achieve a smooth Regge form by the time we have
reached the boundaries of the strip (see Sec. III).

We therefore considered parametrizations of the form

Ima(t) =wCi(t—15)0(—15)8(ts,At),  (2.23)

where C; is a constant, {32>4m.? [adjusted to make
Ima(m,?) fairly small], and 0(fs,A,!) is a cutoff func-
tion which is used to damp Ima(t) exponentially to zero
over a region of width A around {=¢,

12 N. F. Bali, G. F. Chew, and S. Y. Chu, Phys. Rev. 150, 1352
(1966).

13 C. E. Jones, Phys. Rev. 135, B214 (1964).
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Fi16. 1. Self-consistent p-meson trajectory and residue functions,
with a linear form for Imea(¢), and with Rey (I-) arranged to be small
where Ima(f) reaches its maximum. The input parametrizations
are the full line, and the output is the dashed lines. The parameters
are a(®w)= —0. 34, ¢, =6.2X10"3m, 2, Ip=8ms?, ba=127.2m",
c2=12.73,A=0.1, d= 275m,,2, a3 =205m42, by=130m42, 51 =1000m2,

and A~5m,r L

Bali’s work suggests fo~s1, with [Rey(#)| small near
the peak of Ima(f) at ¢St However, examination of
the numerical V/D solutions reveals that without super-
convergence constraints on B;*(s) (see Sec. V), it is
impossible to get a,() below about —0.35. If we insert
this value in (2.20) and choose parameters for Imaf(?)
in (2.23) such that Rea(t=m,?) =1, we find that the
resultant trajectory is very flat for £~0. This flatness is
not characteristic of our output trajectories. It would
seem therefore that unlike Bali’s calculation, our Ima
is being cut off for s<s;. We thus take #, to be a free
parameter which we adjust until the input and output
trajectories match as well as possible near {=0. We
shall see in Sec. III that rather small values of i,
(t.&s1) are called for. This has the benefit that the
output trajectories have roughly the same sort of
slope at {=0 as is found in phenomenological fits.

To suppress spurious bumps in D,*(s,f), the parame-
trization of Imy(#) is adjusted so that |Rey(f)| is very
small where Imea(f) reaches its maximum, i.e., for {=t,.
A suitable form is that used in Ref. 1, namely,

coxMx—d)
(w—az)>+ba’

The cutoff function 8 in Ima(?) is chosen to be of the
form

w=l—4m,?.  (2.24)

Imy () =

B(lay A1) = (14 el tect22)18)1 (2.25)

Thus, for each trajectory we have nine free parame-
ters a(®), c1, I8, ta, C2, N, d, @2, and by, as well as the two
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“cutoff” parameters s; and A, and the scale factor i,
which is held fixed at 200, The object is to solve the
equations of this section with as many trajectories as
are needed for self-consistency in -7 scattering, and to
check that the choice of s; and A is not of great impor-
tance. In Sec. IIT we describe our numerical results.

III. SELF-CONSISTENT TRAJECTORIES

In Fig. 1 we show a self-consistent p trajectory with
the new parametrization. Evidently, there is good
agreement between the input and output trajectory and
residue functions below threshold. Figure 2 shows that
the corresponding partial-wave cross sections do not
agree so well, however, and the widths of the input and
output p disagree by a factor of 2. Two encouraging
improvements of these results over those of Ref. 1 are
that a(e) is much lower, giving a steeper trajectory
with the physical intercept (0.57),'* and secondly that
the requirement that |Rey(f)| be small where Imaf(f)
is peaked imposes a fairly stringent condition on the
parameters of y(f), and leads to a much more nearly
unique bootstrapped p trajectory. The extreme values
of «,(0) for which we were able to find self-consistent
solutions with satisfactory crossing symmetry (i.e.,
with no unacceptable structure in the #-channel cross
section) were 0.3 and 0.72.

In (2.13) the parameter sy is the point where Regge
asymptotic behavior takes over from the low-energy
resonance strip region, and, as discussed in Ref. 15, both
N and D have logarithmic singularities there. On the
other hand, in (2.5) we have cut off unitarity more
gently at s; in calculating the double spectral function,
and so in Fig. 3 we show the effect of using the same
cutoff in the N/D equations, i.e., we replace p;(s) in

p1(s) = pi(s) (14-ele—s0/a)~1,

Evidently this slightly more consistent procedure
makes very little quantitative difference.

200 T T
ai=| a
(mb) 100 b -
0 | 1
0 5 - 10

V5 (myg)

F16. 2. (a) Input (¢-channel) and (b) output (s-channel) cross
sections in the /=I/=1 state, showing the self-consistent p-meson
resonances for the case given in Fig. 1. The input and output p
widths are Iin=135 MeV and Tout=265 MeV.

14 See, e.g., G. Hohler, H. Schaile, and P. Sonderegger, Phys.

Letters 20 79 (1966).
15G., F. Chew, Phys. Rev. 130, 1264 (1964).
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Just as in the p bootstrap described in Ref. 1, to get
self-consistency a large residue is necessary. Indeed it is
necessary in the present work to use input residues which
are larger than those in Ref. 1, in order to have a,( ) <0
with @,(0)=0.57 and Rea,(30)=1, since with the new
parametrization of a(f) only a limited curvature of
Rea(t) is permitted. With large residues, crossed-
channel unitarity is violated for /<0.3, compared with
1<0.21in Ref. 1.

The nature of the m-r crossing matrix ensures that
the p-exchange force generates an output trajectory in
the 7=0 channel which lies higher than the p. This we
identify with the P, and remark that =-r dynamics
gives perhaps the best evidence for the supposition that
there is a high-lying Regge pole with the usual sort of
slope and vacuum quantum numbers.

Thus, for self-consistency, we must include both p
and P in the crossed channels.

Figure 4 shows a self-consistent solution with both P
and p. The two trajectories are almost parallel (the P
is marginally the steeper), differing essentially only in
their asymptotic values [ap(0)=0.15, a,( )= —0.34],
and intercepts at {=0. The p has «,(0)=0.55 if the P
saturates but does not exceed the unitarity bound
ap(0)=1.0. Again the restrictions imposed on the input
residue parameters by demanding self-consistency both
of the trajectories below threshold, and of the cross
sections above threshold, permit only a relatively small
range of bootstrap solutions. The extrema are given in
Table I. It appears that the inclusion of the P force
slightly narrows the range of acceptable «,(0) to between
0.32 and 0.69. If we demand the phenomenological
value «,(0)=0.57,'¢ we get ap(0)=1.1.

It is by no means trivial that there is any acceptable
solution, let alone a reasonably unique one, because in
earlier calculations, using just the first Born approxima-
tion to the left-hand cut, the presence of the strong
repulsion from P exchange produced nonsensical results
(see Ref. 7). Iteration of the potential has corrected
this, and has produced perfectly sensible output tra-
jectories. The proper inclusion of the P has had the
desirable results of making the self-consistent! tra-
jectories slightly steeper, and the residues smaller and
falling off more rapidly as ¢ — — 0. This is partly be-
cause after iteration there is a net attraction from the P,

~0.5 | I
-80 -40 o]

s(m%—)

F16. 3. Effects on the output trajectory of Fig. 1 of cutting off
the N/D integrals of Egs. (2.13) and (2.14) using a modified
phase-space factor, as described in the text. The three cases are
for (a) A=0, (b) A=5m,? and (c) A=10m,2
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4

3 .

Rea

0.2~ p i
Rey
oF p =
o2k Im);,(t;' iImyp(f) N
-0.4 | ] |
-100 (0] 100 200

s,t (m2)

Fie. 4. Self-consistent p and Pomeranchuk trajectory and
residue functions, in each case with a linear form for Ima(f), and
with Rey () arranged to be small where Ime(f) reaches its maxi-
mum. Input is the full line, and output the dashed line. Since the
output trajectories residues are almost parallel, the P and p have
the following input parameters in common: tp==8m.? c1=1.4
X1073m, 2, 1,=135.8m.%, N=0.1, A=35m.?, s=1000m.2,
d=212m,2, as=208m,2, and by = 182m.?; they differ in the parame-
ters a,(®)=—0.35, a,(»)=0.15, ¢:’=11.33, and c2P=8.20.

so that the attractive force needed from the p can be
reduced. Also the repulsive part of the P reduces
By*(s) near threshold (see Fig. 5) and hence decreases
Ni(s). In turn, this reduces the width of the output p
through (2.19).

The input and output partial-wave cross sections are
compared in Fig. 6, and it is seen that a tolerable
(though not perfect) self-consistency has been achieved.
It is particularly gratifying that a symmetrical reso-
nance shape has been obtained. The output p-meson
width of 155 MeV is only a few percent greater than the
most likely physical value,'¢ and a good deal better
than has resulted from previous efforts.?

The results are almost independent of s, provided
that it is greater than about 1000m.2, as Fig. 7 shows,
and we feel justified in ceasing to regard it as a parame-
ter of the model. Figures 8 and 9 demonstrate that a

TasLE I. Extreme values of the P and p trajectory intercepts
possible for a crossing-symmetric bootstrap solution. Also given
are the corresponding trajectory slopes, in units of GeV—2,

ap(0) ap’(0) a,(0) a,'(0)
Upper 1.20 1.02 0.69 1.00
Lower- 0.89 0.72 0.32 0.69

16 N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, and M. Roos, Rev. Mod.
Phys. 41, 109 (1969).
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F1a. 5. The potential function B,(s), defined in (2.12), for I=1
with the exchanged p and P parameters as for the self-consistent
case shown in Fig. 4. The four curves correspond to the following
potentials: (a) iterated p exchange alone, (b) P exchange in the
first Born approximation, (c) iterated P exchange alone, and (d)
t}fleF ;otzl potential (a)+-(c) that produces the output trajectories
of Fig. 4.

fair matching of the high- and low-energy parts of the
amplitude has been attained. With more trouble (and
a good deal more computer time) an exact matching
could probably be achieved.

There is a good deal of evidence that secondary /=0
and 7=1 trajectories (P, p/, etc.) are coupled to the
m-m system but in this calculation there was no sign of
such poles, even when they were included in the input.
Presumably, if they exist they must be generated in
other channels.

IV. CONCLUSION

It has proved possible to bootstrap the p and P
trajectories in the 7-m system, and to obtain trajectories
which are quite close to the physical trajectories in their
behavior near ¢=0. The difficulty of previous calcula-
tions, that the P repulsion gives nonsensical results, has
been overcome by iterating the potential, and as ex-
pected it results in smaller p,widths. The input and out-
put widths are in fair agreement (the agreement could
probably be improved, but with an order of magnitude
more trouble), and are within a small fraction of the

200 I I
Oy
(mb) a
100}~ b -
0 1 1
0 5 )

JE (m1r‘

FiG. 6. (a) s-and (b) ¢-channel cross sections in the state J=]=1
for the self-consistent crossing symmetric solution of Fig. 4. The
input and output p widths are I';n=135 MeV and Tou=155 MeV.
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physical width. This is much better than has been
achieved by such calculations previously. Also the end
points of the trajectories are lower, and the slopes close
to those found empirically.!*

Self-consistency does not restrict the trajectories
uniquely, but the range of reasonable self-consistent
trajectories is comparatively narrow. The results are
independent of the strip width s;, which does not act
as a cutoff, but is simply the matching point between
the high- and low-energy regions.

Despite this modicum of success there remain
considerable difficulties with the whole bootstrap
hypothesis, because there is now some evidence that
meson trajectories remain straight over quite a large
range of energy, producing several recurrences for s>0,
and cutting several negative integers for s>0, where
they result in nonsense dips.2 It may be that the addit-
ion of higher threshold channels, which include external
particles with spin, is capable of keeping trajectories
rising, as Mandelstam!? has suggested (see also Ref. 2),
but this is by no means obvious since the “forces” be-
tween particles with spin must satisfy superconvergence
conditions if unitarity is not to be violated. Otherwise,
if the total spin of the channel were S the trajectories
would have a(®)=S5—1, due to the Gribov-Pomeran-
chuk!® singularity in the potential at /=1, and this
violates the Froissart bound for S>2. The effect of
such superconvergence conditions will be to weaken the
forces. Similarly, if the trajectories are to pass through

|.O ] l
0.5 —
aP(O)
o -
0. It L
> 500 1000 1500
s, m%)
2- 1 ]
a—;"p/
$=0
(GevD) 1.0} N
L I
500 1000 1500
s, m2)

Fic. 7. Values of a,(s=0) and da,(s)/ds|s-o plotted against
s1, the strip width, with all other parameters held fixed at those

quoted in Fig. 4.

7S, Mandelstam, in 1966 Tokyo Summer Lectures in Physics,
edited by G. Takeda and A. Fujii (W. A. Benjamin, Inc., New
York, 1966), Part IT; also, Phys. Rev. 168, 1539 (1968).

18V, N. Gribov and I. Ya Pomeranchuk, in Proceedings of the
International Conference on High Energy Physics, Geneva, 1962,
edited by_J. Prentki (CERN, Geneva, 1962), p. 522.
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negative integer values of o, more superconvergence
conditions must be imposed, with a further weakening
effect.

We have argued in a previous paper'? that if con-
tinuously rising trajectories are to be bootstrapped, or
indeed calculated in any sort of “equivalent-potential”
calculation, Ima(s) must be an increasing function of s.
This seems to be in disagreement with the experimental
facts, at least for mesons. For, if the R and T mesons
are on the p trajectory, their small widths show that
Ima is decreasing at energies above the p mass. We then
have no hope of bootstrapping the trajectory. The quark
model (or some other model which makes very high
threshold channels dominant) might succeed by re-
quiring Ima to be large above the two-quark threshold.
However, then the p would be a CDD (Castillejo-
Dalitz-Dyson) pole in the 77 /=1 partial wave, and we
would not expect to be able to generate it in this sort
of calculation. The comparative success of our computa-
tions may thus be regarded as (rather weak) evidence
against such a quark model.

The other alternative discussed in Ref. 19 is that the
slopes of the Regge trajectories are arbitrary parameters
of the S matrix, which have to be inserted a priori into

103 T T T
102 o
$=30m5 .~
T
p:fs(s.') 10 2 -
[ o s=50_0_m_72;__— -
-
10 ] 1 1
10 102 10° 0%
(m2 )

F1G. 8. Plot of the iterated double spectral function p,eis(s,?)
against ¢ at fixed s for the case of Fig. 4. At s; (=1000m,?) the
iterated double spectral function matches onto the s-channel strip
contribution fairly well.

P, D. B. Collins, R. C, Johnson, and E. J. Squires, Phys.
Letters 26B, 223 (1968).
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F16. 9. Inelasticity parameter n;(s) for 7=1 as a function of
s for (a) =1, (b) I=0.5, and (c) /=0.3, with the parameters of
Fig. 4. At s; it matches reasonably the values calculated from the
asymptotic strip, but unitarity is violated for /<0.3.

one’s calculations. So instead of (2.20) we have the dis-
persion relation

> Tma(s)

a(s)=a+bs+— / ds’. 4.1)

There might, for instance, be a universal slope, b, of
about 1 GeV—2, with the dynamics (which is essentially
contained in Ime) responsible only for local variations
from this in the various physical trajectories. But again
the comparative success of our calculations in obtaining
a reasonable slope for the trajectories near t=0 argues
against such a hypothesis.

Tt still seems reasonable to hope that the sort of cal-
culations we have performed, if extended by the in-
clusion of more channels and the removal of the
Gribov-Pomeranchuk singularities at /= —1, —2, etc.,
may give a good account of trajectories for small |s]|.
But it will obviously involve an inordinate amount of
computation to generalize calculations with this sort of
sophistication to include many coupled channels. And
our results prove that the much simpler, and therefore
more readily generalizable, models of the past, which
used the first Born approximation with a non-Reggeized
exchange, and simply cut off the unitarity integral,
represent very unsatisfactory approximations to the
dynamics. It is clearly going to be very difficult to make
a really critical test of the bootstrap hypothesis.



